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Quasiperiodic tiling in two and three dimensions 
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16 Mill Lane, Cambridge CB2 lRX, UK 
$ Department of Metallurgy and Materials Science, University of Cambridge, Pembroke 
Street, Cambridge CB2 342,  UK 

Received 20 February 1986 

Abstract. Algebraic criteria which allow the vertices of two- and three-dimensional Penrose 
tiling patterns to be specified are presented. The application of these criteria to the 
interpretation of electron microscope observations from quasicrystalline structures is dis- 
cussed. 

1. Introduction 

Precipitates whose electron diffraction patterns exhibit icosahedral point symmetry 
have now been found in a variety of alloys, the most well known of which is the phase 
in Al-Mn originally discovered by Shechtman e? a1 (1984). More recently, Bendersky 
(1985) has reported the existence of a further phase in the Al-Mn system whose electron 
diffraction patterns have a unique tenfold axis. Both these cases provide strong evidence 
for the existence of quasiperiodic structures in which there is long range order but no 
translational order. One possible interpretation of these structures is that they arise 
by a suitable atomic decoration of Penrose tiles in either two or three dimensions, as 
appropriate (see, for example, Mackay 1985, Henley 1985, Knowles et a1 1985). 
However, in order to be able to compute electron diffraction patterns and high resolution 
electron micrographs for a given atomic decoration of the Penrose tiles, it is clearly 
necessary to have a method available for the generation of the vertices of a Penrose 
tiling pattern. Here, we derive suitable algebraic criteria for the generation of vertices 
in a three-dimensional Penrose tiling, where space is filled by two rhombohedra of 
equal sides but with angles of * U  cos(l/J5) i.e. 63.43' and 116.57' (Mackay 1982). 
We also provide algebraic criteria for generating vertices in a two-dimensional Penrose 
tiling in which space is filled with two rhombuses of equal sides but with angles of 
72" and 144" (Gardner 1977). Finally, we comment on their application to electron 
microscope calculations of possible quasicrystalline structures. 

2. Quasiperiodic tiling in three dimensions 

We begin by defining six orthonormal vectors e, i = 1-6 spanning a six-dimensional 
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-1  0 0 0 0 0-  -e l -  
0 1 0 0 0 0  e2 
0 0 1 0 0 0  - e3 
0 0 0 1 0 0  e 4 *  

0 0 0 0 1 0  e5 

I =  - 

& 0 0 0 0 0 1  - . . -  

-45 1 -1 -1 1 1 - 
1 -45 1 -1 -1 1 

-1 1. -45 1 -1 1 
-1 -1 1 4 5  1 1 

1 -1 -1 1 -45 1 
- 1  1 1  1 1 - 4 5  - 

V =  

- - 

and 

W =  

J5 1 -1 -1 1 1 
1 J5 1 -1 -1 1 

-1 1 J5 1 -1 1 
-1 -1 1 J5 1 1 

1 -1 -1 1 J5 1 
, 1  1 1 1 1 J5 

Each of these matrices is of rank three, i.e. only three of the six vectors defined in 
each space are required to span the space. Moreover, these two three-dimensional 
spaces within the six-dimensional space are orthogonal, since 

vw= W = O .  
Within each space, the angle between the ith row vector and the kth row vector is 

* a  cos( l /J5)  (see also Elser 1985), so that the row vectors can be identified with 
vectors defining the vertices of icosahedra, as in figure 1. Each basis vector e, in the 
six-dimensional space can now be written as 

1 
245 e, =-(Vi - Wi) 

and hence the ei can be resolved into components in, or equivalently projections onto, 
the two spaces. We will call the projection onto W space of a vector e, its elevation 
E ( e i )  and the projection onto V space its plan P(ei). 

Consider now the projection onto W space of a six-dimensional cube centred at 
[0, O,O,  0, O,O]  and with vertices at [*f, *;, *;, *;, *;, *;I. The projection of this 
cube is defined by the shape formed by the elevations of each of its 64 vertices. These 
elevations can be sorted into four distinct groups according to their size. 

The twelve elevations with the largest moduli of 7/J2 are defined by 

*-wi i = 1-6 
2J5 
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Figure 1. Lcosahedra centred at the origin showing the relative orientation of the row 
vectors Vi and W,, i = 1-6 spanning the two spaces V and W The vectors are represented 
as vertices of these icosahedra. 

where T = (45 + 1)/2. One such elevation is 

(36)  
E(' 1 1 1 1 -"=-w6* 7 

2d5 2, 2, 2, 2, 2, 2 

The 20 next largest have moduli of (0.3(~+2))'", such as 

(4) 
T 

E(' 1 1 1 -1 -I)=--.[ T2, 7-' ,  T - ' ,  T2, -T - ' ,  - T I .  2, 2, 2, 2, 2, 2 2J5 

These two groups of elevations can be identified as defining the vertices at the fivefold 
and threefold axes respectively of a rhombic triacontahedron in W space centred at 
the origin. The remaining two groups of elevations divide into a group of 20 with 
moduli T-' (0.3(~+2)) ' "  and a group of 12 with moduli ~ - ' / d 2 .  These two groups 
of elevations are vectors proportional to the threefold and fivefold axis vectors of the 
rhombic triacontahedron defined by the first groups of elevations, but lie within this 
rhombic triacontahedron. 

We therefore have the result that the projection of a six-dimensional cube onto W, 
i.e. its elevation, is a rhombic triacontahedron. For the cube centred at [0, 0, 0, 0, 0, 01, 
the face centres of this rhombic triacontahedron are then expressible as the 15 vectors 

1 7  
h = *--( Wik Wj) i#j i, j = 1-6 (5) 2 2d5 

and are vectors such as 
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It follows that the condition that the elevation Y of a particular point X =  
[a ,  b, c, d, e,fl in the six-dimensional space lies within this rhombic triacontahedron 
is simply that 

or equivalently that 

for each h defined by equation (5). The full set of 15 inequalities is obtained by 
cyclically rotating the first five coordinates of each of the three expressions on the 
right-hand side in equation (6). 

These conditions on a given point X form the basis of the method we propose for 
generating sextuplets of integers which define vertices of a three-dimensional Penrose 
tiling. 

Let L be the integer lattice in six-dimensional space shifted by an arbitrary vector 
[a,, bo, co, do, e,, fa]. A typical point on this integer lattice is then 

where U, U ,  w, x, y and z are integers. The vector X therefore defines the unit cube 
centred at X. The elevation of this cube is then Y + R. The origin is in this elevation 
if and only if - Y is within R, or equivalently if Y is within R, in which case equation 
(7) is satisfied for each h defined by equation ( 5 ) .  

The three-dimensional Penrose tiling may now be defined by stating that its vertices 
are the plans of the centres of those cubes whose elevations lie within R. The conditions 
for this to hold are that the inequalities in equation (8) be satisfied. 

This has formed the basis of a computer program used to generate allowed sextuplets 
of integers by testing the vector X obtained by applying a fixed small shift [a,, bo, co, 
do, e,, fO] with a,, bo, c,, do, e, and fa<< 1 to the integer lattice. These sextuplets define 
the vertices of acute and obtuse rhombohedra with angles of * a  cos(l/JS) which fill 
the three-dimensional Penrose tiling in a non-periodic manner. It is convenient to 
define these vertices in conventional three-dimensional coordinates by specifying step 
vectors si, i = 1-6, which are the projections of the ei onto V. Suitable si are the rows 
of the matrix 

I X . h ( G h . h  (7) 

I x -  hl< O.I(r+ 1) (r+2)  (8) 

X = [ a,+ U, bo+ U ,  c,+ w, do+ x, e,+ y ,  fo+ z] 

r 
1 

-1  
-r 

0 -  
0 

and so a sextuplet of integers [U, U ,  w, x, y ,  z] represents a vertex of the tiling at 
us1 + vs2 + ws3 + xs4+ ys5 + zs6. Since these si are also necessarily identifiable as being 
parallel to the fivefold axes of a suitable icosahedron, it is a simple matter to project 
the pattern down the fivefold axes, such as s2, threefold axes such as st + s2 - s4, twofold 
axes such as s2 + s3 and mirror axes perpendicular to fivefold axes such as s1 + 2s2 - s4. 
Formally, these axes in the tiling are not true symmetry axes, but since the power 
spectra FF* from their Fourier transforms exhibit these symmetries (see also Duneau 
and Katz 1985, Elser 1986), it is convenient to refer to them as such. Figure 2 shows 
the projected positions of the vertices defining a three-dimensional Penrose tiling within 
a given ‘box’ for each of the axis types; in each case, the height of the ‘box’ along the 
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Figure 2. Projected positions of points defining the vertices of acute and obtuse rhom- 
bohedra in a 3D Penrose tiling down ( a )  a fivefold axis, (b)  a threefold axis, (c) a twofold 
axis and (d) a mirror axis perpendicular to a fivefold axis. In each case, the vertices falling 
within a box of size L X  L X  LIZ are shown, where the square of side L is perpendicular 
to the axis of projection and the dimension of LIZ is along the axis of projection. 

projection axis has been chosen to be half the width of the square dimension orthogonal 
to the projection axis. 

3. Quasiperiodic tiling in two dimensions 

For the two-dimensional Penrose tiling, in which space is filled aperiodically with two 
rhombuses with angles of 72" (thick rhombuses) and 144" (thin rhombuses), it is 
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convenient to define five orthonormal vectors eb i = 1-5 spanning a five-dimensional 
space. These vectors can be identified as the rows of the unit 5 x 5 matrix. 

Let L be the integer lattice in this space shifted by a vector [a,, bo, co, do, e,]. A 
typical point on this integer lattice is then 

X = [ a ,  b, c ,d ,e]=[a,+u,  bo+u,co+w,do+x,eo+yl  

where U, U, w, x and y are integers. X then generates a vertex of the two-dimensional 
aperiodic tiling if and only if 

( i)  the modulus of its inner product with any cyclic permutation of [T, 0, 1, 1,0] is 
sd5/2  and 

(ii) the modulus of its inner product with any cyclic permutation of [ - r - ' ,  1,0,0,1] 
is ~ 7 ~ 1 2 .  

Suitable step vectors are s,, i = 1-5, cyclically defining the vertices of a regular pentagon 
from its centre. 

In the two-dimensional case, it is also necessary to apply a sum condition that 
a,+ bo+ c,+ do+ e,  =;(mod 1) to create the non-periodic patterns discussed by de 
Bruijn (1981), which he terms AR (arrowed rhombus) patterns. In these patterns, de 

Figure 3. Two-dimensional Penrose tiling patterns 
obtained for a given X = a , + b , + c , + d , + e , .  ( a )  
Z = -2.5, generating the pattem also obtainable by 
inflation and deflation of the two rhombuses; ( b )  
X = -2.8301; ( c )  X = -3. Note the tenfold axis in 
( c )  in the lower right-hand quadrant of the pattem 
just below the centre. 

I 

I 
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( a )  ( b )  

(Cl (4 

Figure 4. (a,  c) 2D quasilattice models and (b,  d) their associated power spectra for 500 kV 
electrons displayed on a logarithmic scale of intensity. In ( a )  and (c), aluminium atoms 
occupy the vertices of the patterns and the rhombus sides are the atom-atom distances in 
crystalline aluminium, 0.286 nm. For ( a )  and (c) L= -2.5 and for ( b )  and ( d )  L= -3. 
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Bruijn identified eight vertex types having coordination numbers between three and 
seven. Further features of this particular pattern are that the ratio of the number of 
thick rhombuses to the number of thin rhombuses in a portion of the pattern approaches 
T as the area of the portion tends to infinity, and that for a, + bo + co + eo = -n  - 2.5 
for some integer n, the sum of the integers U + U + w + x + y defining a particular vertex 
will be one of the integers n + 1, n + 2, n + 3 and n + 4. A portion of this pattern is 
shown in figure 3(a). 

Relaxing the sum condition on ao+ bo+ co+ do+ eo also produces patterns which 
are aperiodic, such as those shown in figures 3(b)  and 3 ( c ) .  In such patterns, the ratio 
of the number of thick rhombuses to the number of thin rhombuses is also T in an 
infinite portion of the tiling. While the detailed mathematics of these latter patterns 
will be discussed elsewhere (Conway 1986), we observe that they cannot arise from 
the inflation and deflation rules for producing AR patterns (Gardner 1977, de Bruijn 
1981) and are instead distinct aperiodic ‘universes’ in their own right (see also de 
Bruijn 1981, Jaric 1986). The power spectra from the Fourier transforms of these 
patterns differ only on a fine scale from that produced from an AR pattern. This can 
be seen by a comparison of figures 4(b) and 4 ( d ) ,  which display on a logarithmic 
scale of intensity the power spectra for 500 kV electrons from the quasilattices shown 
in figures 4(a) and 4(c) respectively. For each of these two quasilattice models, 
aluminium atoms were placed at all the allowed vertices of the portions of the 2~ 

patterns shown and the rhombus sides were taken to be equal to the atom-atom distance 
in crystalline aluminium, 0.286 nm. Although these models are physically unrealistic 
in that they permit aluminium-aluminium nearest-neighbour distances which are much 
too close, the similarity of figures 4(b) and 4(d)  clearly demonstrates the potential 
difficulty of distinguishing between different pattern arrangements of the acute and 
obtuse rhombuses for a given atomic decoration of the rhombuses on the basis of the 
diffraction pattern intensities. 

4. Discussion 

The method we have proposed for the three-dimensional aperiodic tiling involves 
constructions similar to those proposed by Kramer and Neri (1984), Duneau and Katz 
(1985), Elser (1986) and Socolar et a1 (1985), the main difference being that we present 
our criteria for deciding whether a point lies inside a given region (which we take to 
be the elevation of the six-dimensional cube centred at the origin) in an explicit 
algebraic form suitable for generating portions of quasiperiodic tiling by computer. 
The criteria we have presented for the two-dimensional case are also related to those 
proposed by de Bruijn (1981) and discussed further by Jaric (1986). De Bruijn preferred 
to use the concept of pentagrids to define the tiling; however, the necessity of projecting 
from a five-dimensional space to a two-dimensional plane is a common feature. 

Whichever method is used to produce the vertices defining the aperiodic tiling in 
either ZD or 3 ~ ,  any material with a quasicrystalline structure must decorate the tiling 
with atoms in a suitable manner able to account for experimental observations. One 
approach to this has been to study the crystal structures of phases with similar 
compositions and, by appropriate atomic shuffles, decomposa these structures into the 
two acute and obtuse rhombohedra from the 3~ tiling (e.g. Mackay 1985, Henley 1985, 
Audier and Guyot 1986, Henley and Elser 1986). Alternatively, atomic decorations of 
the acute and obtuse rhombohedra have been suggested using density and packing 
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considerations for hard spheres (Knowles et al 1985, Kimura et a1 1986). In a 
companion paper (Knowles and Stobbs 1986), we show that by considering small 
volumes of quasicrystal with different atomic decorations, radically different x-ray and 
kinematical electron diffraction patterns can be obtained, just as in the atomic decor- 
ation of Bravais lattices in crystalline materials. This approach allows a way of 
eliminating models which would otherwise appear to be viable for a given alloy system, 
without recourse to lengthy image simulations of high resolution electron micrographs. 
However, such simulations are clearly necessary for atomic decorations which give 
reasonably good quantitative agreement with x-ray diffraction data where, in principle, 
the effects of double diffraction can be ignored, even for a quasicrystalline material. 
In these cases, the 3D quasicrystalline structure needs to be specified over appreciable 
areas, in order to minimise the edge effects in multislice calculations and to perform 
calculations for reasonable thicknesses of 10 nm or more. 
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